MATH 1010E University Mathematics
Lecture Notes (week 7)
Martin Li

1 Optimization II: Extreme Value Theorem

Recall from last lecture that we are interested in solving the following opti-
mization problem:

max/min  f = f(z) where z € T

where I could be a an open/closed and finite/infinite interval.
Let’s look at some typical scenarios that could happen when we are
looking for the maximum and minimum.

(1) Let f(z) =sinz and I = [0,27]. The maximum is 1 and the minimum
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is —1. Both of them are achieved in the interior of I and we have

f' =0 at these points.

(2) Let f(z) =z and I = [0,1]. The maximum is 1 and the minimum is
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0. Both of them are achieved at the boundary points x = 0 and z = 1,
where f’ # 0 at these points.

(3) Let f(z) = tanz and I = (—7/2,7/2) be an open interval. Neither the
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maximum nor minimum exist in this case because lim,_, 4,/ tanz =
Foo.

(4) Let f(z) = e* and I = R = (—00, +00) be the infinite interval. Neither
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the maximum nor minimum exist in this case because lim, _,o, €* = 0o
and lim,_, o, e* = 0, which is not achieved at any z.

(5) Let f(z) be the following function defined on I = [0,2] as below:
Neither the maximum nor minimum exist because the “maximum”
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value 1 and “minimum” value i—1 s not achieved by any point. Note
that f is not continuous at z = 1.

So the general question about the optimization problem is that “when
can we find the maximum and minimum?”. This-is answered by the following
theorem.

Theorem 1.1 (Extreme Value Theorem) Any continuous function f :
[a,b] = R on a finite, closed interval must achieve its minimum and maxi-
mum.

The proof of the theorem is omitted since that uses the Bolzano-Weierstrass
theorem about the the compactness of a closed finite interval [a, b], which is
beyond the scope of this class (interested students may consult any textbook
on mathematical analysis).



The Extreme Value Theorem is the foundation of why the first derivative
test holds. Let us restate this test.

Theorem 1.2 (First order condition/First Derivative Test) If f : [a,b] —
R is continuous on the closed interval [a,b] and differentiable on the open
interval (a,b), then if 2o € (a,b) is an interior minimum or mazimum point,

then we have

Filzo) =0,

Proof: Let zg € (a,b) be an interior minimum point (the proof for maximum
point is similar and left as an exercise), i.e.

f(zo) < f(x) for all z € [a, b]. (1.1)

Our goal is to show that f’(zp) = 0. From the assumption, we already know
that f’(zo) exists. We just have to prove that its value is 0. Since f(zo)
exists, we have
T h) — g h) — .
lim {0+ h) — f(zo) — f(z0) = lim f(@o+h) — f(zo)
h—0+ h h—0- h

(1.2)

Now, for the right hand limit, we consider all A > 0 and

f(zo+h) — f(xo)

h—0*+ h

>0

since the numerator f(xzo + h) — f(zo) > 0 by (1.1). Similarly, for the left
hand limit, we consider all h < 0 and

lim f(zo + h}z — f(=o) <0

h—0—

since the numerator f(zg + h) — f(z¢) > 0 by (1.1). Combining these two
inequalities with (1.2), we have

f'(z0) >0 and f(z0) <0,

which can only be true when f’(zg) = 0. This proves the first derivative
test.

Remark 1.3 The first derivative test can only be applied if f is differen-
tiable and the minimum or mazimum lies in the interior. For example, if
f(z) = |z| on [~1,1], then the minimum occurs at x = 0 where the function
is not differentiable so we don’t have f'(0) = 0. If the minimum or mazi-
mum occurs at an end point, e.g. see example (2) on the first page, then we
do not have f'(zo) =0 either. %
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2 Optimization ITI: Local min/max and 2nd Deriva-
tive Test

Before we talk about the second derivative test, we need to introduce the
concept of local minimum and local maximum.

Definition 2.1 Let f : [a,b] — R be a function. A point zo € [a,b] is said
to be a local minimum if there exists € > 0 such that

f(zo) < f(x) for all x € [a,b] such that |z — x| < €.

Similarly, we define local maximum by reversing the inequality to f(xq) >

f(z).

In other words, local minimum are minimum compared only to nearby
points. A global minimum has to be a minimum compared to ALL the
points, including points far away from zy. The picture below illustrates this
concept:
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Now we can state the second derivative test.

Theorem 2.2 (Second Derivative Test) Let f : (a,b) — R be a twice
differentiable function and x¢ € (a,b). Suppose

(i) f'(zo) =0, i.e. Ty is a critical point; and
(i1) f"(zo) > 0 (respectively f"(zo) < 0),

then xg is a local minimum (respectively local mazimum,).



Note that if f”(zp) = 0, then we cannot say anything about the critical
point zg. It is inconclusive from the second derivative test in this case. The
following pictures show the model behavior for each of these cases:
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The proof of the second derivative test needs more tools - mean value
theorems, which will be discussed in the next section.

3 Mean Value Theorems

There are a couple versions of mean value theorems on the market. A
prototype of mean value theorem is the following:

Theorem 3.1 (Lagrange’s Mean Value Theorem) If f : [a,b] — R is
continuous on [a,b] and differentiable on (a,b), then there exists some & €
(a,b) such that

Remark 3.2 Note that the conclusion of the theorem does not tell us where
is this “€” located exactly. We just know that it lies somewhere strictly
between a and b. Notice that this fact is particularly useful when a is very
close to b, in which case £ is also very close to either a or b. This fact will
be used later when we discuss Taylor approzimations.

Geometrically, Lagrange’s Mean Value Theorem says the following: sup-
pose we draw a line connecting the end points of a graph (the blue line
segment), if you move the blue line in a parallel manner, then it would
touch the graph at some point again. The derivative of f at that point is



equal to the slope of the blue line.
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To prove Lagrange’s Mean Value Theorem, we first look at a special
case where f(a) = f(b), which is another mean value theorem discovered by
Rolle.

Theorem 3.3 (Rolle’s Mean Value Theorem) Under the same hypoth-
ests as in Lagrange’s Mean Value Theorem with the additional condition that
f(a) = f(b), then there exists £ € (a,b) such that f'(§) = 0.

Proof: The proof is just an application of the Extreme Value Theorem
together with the first order condition. First of all, since f is continuous
on the closed finite interval [a, b], the Extreme Value Theorem applies and
both global minimum and maximum exist.
Let m = min f and M = max f. We consider two possible cases:
Case 1: m = M. This implies that f(z) = m = M is a constant function
since
m< f(z) <M for all € [a, b].
Hence, f'(z) =0 for all z € (a,b). Therefore, we can take any & € (a,b).
Case 2: m # M. We cannot have both minimum and maximum achieved
at the end points since f(a) = f(b) would imply m = M, which is just Case
1. Therefore, either the maximum or the minimum is achieved at some
€ € (a,b) in the interior. By the first order condition, we have f'(¢) = 0. So
we are done.
Proof of Lagrange’s Mean Value Theorem: Define a function ¢ : [a,b] — R
by
o(z) == [f(0) — fla)]lz — (b—a)f(x).
Note that ¢ is continuous on [a, b] and differentiable on (a,b) (why?). More-
over,

p(a) = af(b) = bf(a) = p(b).



Therefore, we can apply Rolle’s Mean Value Theorem to conclude that there
exists £ € (a,b) such that ¢/(€) = 0. On the other hand, a direct calculation
gives

¢'(@) = £(b) — f(a) = (b= a)f'(2),
and hence

PE=0 e @ fl)=—t—"

This proves Lagrange’s Mean Value Theorem.
Question: Use Lagrange’s Mean Value Theorem to prove the following:

Theorem 3.4 (Cauchy’s Mean Value Theorem) If f,g,: [a,b] — R
are two functions which are continuous on [a,b] and differentiable on (a,b),
and that ¢'(xz) # 0 for all x € (a,b), then there exists & € (a,b) such that

f'€) _ f(b) - f(a)
g€  g(b)—gla)

Remark 3.5 If g(z) = x, then it is just Lagrange’s Mean Value Theorem.
Note that the right hand side above is always well defined, i.e. g(a) # g(b).
Otherwise, Rolle’s Mean Value Theorem would imply the existence of some
€ € (a,b) such that g'(§) = 0 which contradicts the assumption on g.

Question: Point out the flaw in the following proof of Cauchy’s Mean

Value Theorem: F5)—F(a)
fO)~fa) _ e _ F9)
9(b) —g(a)  gbgle)  g/(&)°

You can find the correct proof in the textbook ”University Mathematics”.

4 Application of Mean Value Theorem I: Taylor’s
Theorem
Consider a differentiable function f : (a,b) — R, and fix some zg € (a,b),

applying Lagrange’s Mean Value Theorem with @ = 2 and b = z > 0,
there exists some £ € (29, x) such that

f(m)—f(xﬂ) _ gt



which we can rewrite as

f(@) = f(zo) + f'(€)(z — z0) for all .

Note that the right hand side looks like a linear function in x but it’s actually
not because ¢ actually depends (in some nonlinear way) on z (and zg of
course). However, when z = o, it is reasonable to have f'(£) =~ f/(xg) since
§ =~ xo as well (Caution: we need continuity of f’ at ¢ here), therefore

f(z) = f(zo) + f'(z0)(z — z0) for z =~ x.

Now the right hand side is indeed a linear polynomial in z, but it would not
be exactly the same as f(z) and it’s only a good approximation near the
“center” xg. The graph of the linear function on the right hand side actually
is the tangent line to the graph at the point (zo, f(z0)).
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Next, we can ask the question whether we can approximate f(x) by a
polynomial of higher degree (e.g. a quadratic polynomial) near zq. In fact,
the answer is YES, as long as f(z) can be differentiated sufficiently many
times. This is the famous Taylor’s Theorem.

Theorem 4.1 (Taylor’s Theorem) Let f : (a,b) — R be a function which
has (n +1)-derivatives and fix some g € (a,b), then for all z € (a,b), there
exists some £ (depending on x) lying strictly between xg and x such that

" P (n) z
f@) = floo)+ F @)@ —a0) + T g gy L0 g
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We call the first part Taylor polynomial of f of degree n at x = xg
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TP, (z) := f(xo)+ f'(x0)(z —x0) + (x—zo)"



and the second part the error term

(n+1)
Enfa) = oo -zt

Remark 4.2 Note that the theorem holds for ALL x € (a,b), not just for
those = close to xo. However, if we want the error term En(x) to be small,
then we require © = g to make (x — zo)"*! in the error term small.

When n = 0, Taylor’s theorem says

f(@) = f(za) + f(€)(z — z0),

which is just Lagrange’s Mean Value Theorem.
When n = 1, Taylor’s theorem says

F"(€)
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f(z) = fzo) + f(z0)(z — z0) +
therefore, for z = xg,

£@) = fzo) + 1@~ z0) + L @ — ao)?

which is a quadratic polynomial in z approximating f(z) near z.
Question: Check that T'P,(z) approximates f(z) at z = xo up to order
n, i.e. show that

TPa(w0) = f(z0), (TPu)(mo0) = f'(x0), -+ (TPy)™(z0) = f™ (x0).
Example 4.3 Find TP3(z) about x = 0 for the function f(z) = ﬁ

Solution: Recall that

1 0 " O
TPs(z) = f(0) + f'(0)x + f,f )m2+ f3(l )53
Computing the successive derivatives, we get
= _1_ / — ;1_ " _ 2 1 _ _6

Substituting z = 0, we obtain
fO) =1, fO0)=-1, f'(0)=2 f"(0)=-6.
Therefore, the Taylor polynomial of f of degree 3 at z =0 is
TP(z)=1-z+ 2% — x5



Example 4.4 Find TP3(x) about x =1 for the function f(z) = ﬁ

Solution: This time, we have

f”(l) i 9 fl//(l) 3

3 (z—-1) +T(I—l) .
Using the calculation of derivatives above, we find that the Taylor polyno-
mial of f of degree 3 at x =1 is

TPy(z) = % - %(:c —1+ é(a; S )

Taylor’s Theorem can be used to prove some inequalities.

TPhy(z) = f(1)+ f()(= - 1)+

Example 4.5 Use Taylor’s Theorem to prove that

2
e$>1+m+% for all z > 0.

Solution: By Taylor’s Theorem for f(z) = e* at z = 0 with n = 1, since
f(z) =e* forn=0,1,2,3, ..., we have
3
ef=1+z+ E—:L’2,
2
for some ¢ € (0,z) (note that > 0). Now, since £ > 0, we have e > 1,
this implies that
. et 2 1 2
ef=1+4a+ L >14+z+ 5%
which is the inequality we want to prove.
We can also use the Taylor’s theorem to prove the second derivative test.
Remember the second order Taylor approximation tells us that
I (o :
f(z) = f(zo) + f'(z0)(z — x0) + ——E)—)(a: — z0)? for z = zo.
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If we have f’(zg) =0 and f”(zg) > 0, then

f(@) = f(zo) + f—ugti)(’l? —20)? > f(0) for z = xg.

This hints that xg is a local minimum. However, this is not a rigorous proof.
Question: Make the argument rigorous if we assume that f is twice
differentiable AND f” is continuous at z.
The original second derivative test holds even without the extra assump-
tion on the continuity of f”. One has to be more careful in the proof though
(see textbook ”University Mathematics” for a complete proof in this case).
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